Energy Performance Certificate

Northern Ireland

35a Main Street Rathmore Belleek ENNISKILLEN BT93 3FY Date of assessment: 01 February 2013
Date of certificate: 25 April 2013

Reference number: 9404-6096-4829-5800-4273
Type of assessment: RdSAP, existing dwelling
Accreditation scheme: Stroma Certification
Assessor's name: Mr Ian Carson DEA

Assessor's accreditation number: STRO000264

Employer/Trading name: Carson Energy Testing

Employer/Trading address: Mugglinagrow Garrison, CO FERMANAGH,

BT93 4BA

Related party disclosure: No related party

Energy Efficiency Rating

	Current	Potential
Very energy efficient - lower running costs A 92 plus B 81-91 C 69-80 D 55-68 E 39-54 F 21-38	Current 54	Potential 69
Not energy efficient - higher running costs		

Technical Information

Main heating type and fuel: Electric storage heaters

Total floor area: 73 m²

Approximate energy use:451 kWh/m² per yearApproximate CO2 emissions:80 kg/m² per yearDwelling type:Top-floor flat

Benchmarks

Average for Northern Ireland

The approximate energy use and CO_2 emissions are per square metre of floor area based on fuel costs for the heating, ventilation, hot water and lighting systems. The rating can be compared to the benchmark of the average energy efficiency rating for the housing stock in Northern Ireland.

Estimated energy use, carbon dioxide (CO₂) emissions and fuel costs of this home

	Current	Potential	
Energy use	451 kWh/m² per year	361 kWh/m² per year	
Carbon dioxide emissions	5.8 tonnes per year	4.7 tonnes per year	
Lighting	£64 per year	£64 per year	
Heating	£587 per year	£473 per year	
Hot water	£312 per year	£96 per year	

The figures in the table above have been provided to enable prospective buyers and tenants to compare the fuel costs and carbon emissions of one home with another. To enable this comparison the figures have been calculated using standardised running conditions (heating periods, room temperatures, etc.) that are the same for all homes, consequently they are unlikely to match an occupier's actual fuel bills and carbon emissions in practice. The figures do not include the impacts of the fuels used for cooking or running appliances, such as TV, fridge etc.; nor do they reflect the costs associated with service, maintenance or safety inspections. Always check the certificate date because fuel prices can change over time and energy saving recommendations will evolve.

To see how this home can achieve its potential rating please see the recommended measures.

About this document

The Energy Performance Certificate for this dwelling was produced following an energy assessment undertaken by a qualified assessor, accredited by Stroma Certification, to a scheme authorised by the Government. This certificate was produced using the RdSAP 2009 assessment methodology and has been produced under the Energy Performance of Buildings (Certificates and Inspections) Regulations (Northern Ireland) 2008. A copy of the certificate has been lodged on a national register.

If you have a complaint or wish to confirm that the certificate is genuine

Details of the assessor and the relevant accreditation scheme are on the preceding page. You can get contact details of the accreditation scheme from their website at www.stroma.com together with details of their procedures for confirming authenticity of a certificate and for making a complaint.

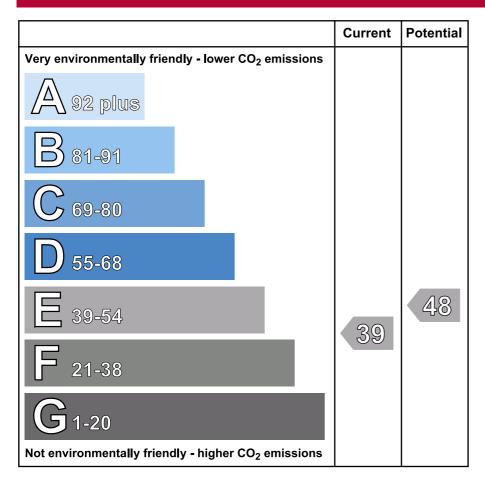
About the building's performance ratings

The ratings provide a measure of the building's overall energy efficiency and its environmental impact, calculated in accordance with a national methodology that takes into account factors such as insulation, heating and hot water systems, ventilation and fuels used. The average Energy Efficiency Rating for a dwelling in Northern Ireland is band D (rating 57).

Not all buildings are used in the same way, so energy ratings use 'standard occupancy' assumptions which may be different from the specific way you use your home. Different methods of calculation are used for homes and for other buildings. Details can be found at www.epb.dfpni.gov.uk

Buildings that are more energy efficient use less energy, save money and help protect the environment. A building with a rating of 100 would cost almost nothing to heat and light and would cause almost no carbon emissions. The potential ratings describe how close this building could get to 100 if all the cost effective recommended improvements were implemented.

Remember to look for the energy saving recommended logo when buying energy-efficient products. It's a quick and easy way to identify the most energy-efficient products on the market.


For advice on how to take action and to find out about offers available to help make your home more energy efficient, call **0800 512 012** or visit **www.energysavingtrust.org.uk**

About the impact of buildings on the environment

One of the biggest contributors to global warming is carbon dioxide. The way we use energy in buildings causes emissions of carbon. The energy we use for heating, lighting and power in homes produces over a quarter of the UK's carbon dioxide emissions and other buildings produce a further one-sixth.

The average household causes about 6 tonnes of carbon dioxide every year. Adopting the recommendations in this report can reduce emissions and protect the environment. You could reduce emissions even more by switching to renewable energy sources. In addition there are many simple everyday measures that will save money, improve comfort and reduce the impact on the environment. Some examples are given at the end of this report.

Environmental Impact (CO₂) Rating

Visit the Department of Finance and Personnel website at www.epb.dfpni.gov.uk to:

- Find how to confirm the authenticity of an energy performance certificate
- Find how to make a complaint about a certificate or the assessor who produced it
- Learn more about the national register where this certificate has been lodged
- Learn more about energy efficiency and reducing energy consumption

Further information about Energy Performance Certificates can be found under Frequently Asked Questions at www.epb.dfpni.gov.uk and at www.niepcregister.com

Recommended measures to improve this home's energy performance

35a Main Street Rathmore Belleek ENNISKILLEN

BT93 3FY

Date of certificate: 25 April 2013

Reference number: 9404-6096-4829-5800-4273

Summary of this home's energy performance related features

The table below gives an assessment of the key individual elements that have an impact on this home's energy and environmental performance. Each element is assessed by the national calculation methodology; 1 star means least efficient and 5 stars means most efficient. The assessment does not take into consideration the physical condition of any element. 'Assumed' means that the insulation could not be inspected and an assumption has been made in the methodology based on age and type of construction.

Element	Description	Current performance		
		Energy Efficiency	Environmental	
Walls	Cavity wall, as built, insulated (assumed)	****	****	
Roof	Pitched, 150 mm loft insulation	****	****	
Floor	(other premises below)	_	_	
Windows	Fully double glazed	***	***	
Main heating	Electric storage heaters	***	* ~ ~ ~ ~	
Main heating controls	Manual charge control	***	***	
Secondary heating	Portable electric heaters (assumed)	_	_	
Hot water	Electric immersion, off-peak	* ~ ~ ~ ~	* * * * *	
Lighting	Low energy lighting in 80% of fixed outlets	****	****	

Current energy efficiency rating

E 54

Current environmental impact (CO₂) rating

E 39

Low and zero carbon energy sources

None

Recommendations

The measures below are cost effective. The performance ratings after improvement listed below are cumulative, that is they assume the improvements have been installed in the order that they appear in the table. The indicative costs are representative for most properties but may not apply in a particular case.

Lower cost measures	Indicative cost	Typical savings per year	Ratings after improvement		
			Energy efficiency	Environmental impact	
1 Increase loft insulation to 270 mm	£100 - £350	£41	D 56	E 41	
2 Increase hot water cylinder insulation	£15 - £30	£56	D 59	E 43	
3 Draught proof single-glazed windows	£80 - £120	£21	D 60	E 44	
Sub-total		£119			
Higher cost measures					
Fan assisted storage heaters and dual immersion cylinder	£600 - £800	£165	C 69	E 48	
5 Heat recovery system for mixer showers	£585 - £725	£47	D 62	E 46	
Total		£331			
Potential energy efficiency rating D 62					
Potential environmental impact (CO ₂) rating				E 46	

Further measures to achieve even higher standards

None

Improvements to the energy efficiency and environmental impact ratings will usually be in step with each other. However, they can sometimes diverge because reduced energy costs are not always accompanied by reduced carbon dioxide emissions.

About the cost effective measures to improve this home's performance ratings

Building regulations apply to most measures. Building regulations approval and planning consent may be required for some measures. If you are a tenant, before undertaking any work you should check the terms of your lease and obtain approval from your landlord if the lease either requires it, or makes no express provision for such work. Also check with the Energy Saving Trust or your local council to see if any grants are available.

Lower cost measures

These measures are relatively inexpensive to install and are worth tackling first. The indicative costs of measures included earlier in this EPC include the costs of professional installation in most cases. Some of them may be installed as DIY projects. DIY is not always straightforward, and sometimes there are health and safety risks, so take advice before carrying out DIY improvements.

1 Loft insulation

Loft insulation laid in the loft space or between roof rafters to a depth of at least 270 mm will significantly reduce heat loss through the roof; this will improve levels of comfort, reduce energy use and lower fuel bills. Insulation should not be placed below any cold water storage tank; any such tank should also be insulated on its sides and top, and there should be boarding on battens over the insulation to provide safe access between the loft hatch and the cold water tank. The insulation can be installed by professional contractors but also by a capable DIY enthusiast. Loose granules may be used instead of insulation quilt; this form of loft insulation can be blown into place and can be useful where access is difficult. The loft space must have adequate ventilation to prevent dampness; seek advice about this if unsure (particularly if installing insulation between rafters because a vapour control layer and ventilation above the insulation are required). Further information about loft insulation and details of local contractors can be obtained from the National Insulation Association (www.nationalinsulationassociation.org.uk).

2 Hot water cylinder insulation

Increasing the thickness of existing insulation around the hot water cylinder will help to maintain the water at the required temperature; this will reduce the amount of energy used and lower fuel bills. An additional cylinder jacket or other suitable insulation layer can be used. The insulation should be fitted over any thermostat clamped to the cylinder. Hot water pipes from the hot water cylinder should also be insulated, using pre-formed pipe insulation of up to 50 mm thickness (or to suit the space available) for as far as they can be accessed to reduce losses in summer. All these materials can be purchased from DIY stores and installed by a competent DIY enthusiast.

3 Draught proofing

Fitting draught proofing, strips of insulation around windows and doors, will improve the comfort in the home. A contractor can be employed but draught proofing can be installed by a competent DIY enthusiast.

Higher cost measures

4 Fan assisted storage heaters

Modern storage heaters are smaller and easier to control than the older type in the property. Ask for a quotation for new, fan-assisted heaters with automatic charge control. A dual-immersion cylinder, which can be installed at the same time, will provide cheaper hot water than the system currently installed. As installations should be in accordance with the current regulations covering electrical wiring, only a qualified electrician should carry out the installation. It is best to obtain advice from a qualified heating engineer. Ask the engineer to explain the options, which might also include switching to other forms of electric heating.

5 Heat recovery system for mixer showers

A shower heat recovery system extracts heat from the water in the shower drain and transfers it to incoming cold water. This reduces the amount of energy needed per shower.

About the further measures to achieve even higher standards

Not applicable

What can I do today?

Actions that will save money and reduce the impact of your home on the environment include:

- Ensure that you understand the dwelling and how its energy systems are intended to work so as to obtain the maximum benefit in terms of reducing energy use and CO₂ emissions.
- Check that your heating system thermostat is not set too high (in a home, 21°C in the living room is suggested) and use the timer to ensure you only heat the building when necessary.
- Make sure your hot water is not too hot a cylinder thermostat need not normally be higher than 60°C.
- Turn off lights when not needed and do not leave appliances on standby. Remember not to leave chargers (e.g. for mobile phones) turned on when you are not using them.
- Close your curtains at night to reduce heat escaping through the windows.
- If you're not filling up the washing machine, tumble dryer or dishwasher, use the half-load or economy programme. Minimise the use of tumble dryers and dry clothes outdoors where possible.
- Check the draught-proofing of windows and replace it if appropriate.
- If you have unused open chimneys consider blocking them off (making provision for a ventilation opening and a cowl on top of the chimney to avoid dampness).