Energy performance certificate (EPC)

37, Rosgoill Park BELFAST BT11 9QU	Energy rating	This certificate expired on: Certificate number:	1 May 2019 9105-4126-5620-5000-0513
Total floor area			

91 square metres

Energy efficiency rating for this property

This property's current energy rating is D. It has the potential to be C.

See how to improve this property's energy performance.

The graph shows this property's current and potential energy efficiency.

Properties are given a rating from A (most efficient) to G (least efficient).

Properties are also given a score. The higher the number the lower your fuel bills are likely to be.

For properties in Northern Ireland:

- the average energy rating is D
- the average energy score is 60

Breakdown of property's energy performance

This section shows the energy performance for features of this property. The assessment does not consider the condition of a feature and how well it is working.

Each feature is assessed as one of the following:

- very good (most efficient)
- good
- average
- poor
- very poor (least efficient)

When the description says "assumed", it means that the feature could not be inspected and an assumption has been made based on the property's age and type.

Feature	Description	Rating
Wall	Cavity wall, as built, insulated (assumed)	Good
Roof	Pitched, 100 mm loft insulation	Average
Window	Fully double glazed	Average
Main heating	Boiler and radiators, oil	Average
Main heating control	Programmer and room thermostat	Poor
Hot water	From main system, no cylinderstat	Poor
Lighting	Low energy lighting in 60% of fixed outlets	Good
Floor	Solid, no insulation (assumed)	N/A
Secondary heating	None	N/A

Primary energy use

The primary energy use for this property per year is 276 kilowatt hours per square metre (kWh/m2).

What is primary energy use?

Environmental impact of this property

This property's current environmental impact rating is E. It has the potential to be D.

Properties are rated in a scale from A to G based on how much carbon dioxide (CO2) they produce.

Properties with an A rating produce less CO2 than G rated properties.

An average household produces

This property produces

4.8 tonnes of CO2

This property's potential production

3.1 tonnes of CO2

By making the <u>recommended changes</u>, you could reduce this property's CO2 emissions by 1.7 tonnes per year. This will help to protect the environment.

Environmental impact ratings are based on assumptions about average occupancy and energy use. They may not reflect how energy is consumed by the people living at the property.

How to improve this property's energy performance

Making any of the recommended changes will improve this property's energy efficiency.

If you make all of the recommended changes, this will improve the property's energy rating and score from D (61) to C (76).

What is an energy rating?

Recommendation 1: Loft insulation

Loft insulation laid in the loft space or between roof rafters to a depth of at least 270?mm will significantly reduce heat loss through the roof; this will improve levels of comfort, reduce energy

use and lower fuel bills. Insulation should not be placed below any cold water storage tank; any such tank should also be insulated on its sides and top, and there should be boarding on battens over the insulation to provide safe access between the loft hatch and the cold water tank. The insulation can be installed by professional contractors but also by a capable DIY enthusiast. Loose granules may be used instead of insulation quilt; this form of loft insulation can be blown into place and can be useful where access is difficult. The loft space must have adequate ventilation to prevent dampness; seek advice about this if unsure (particularly if installing insulation between rafters because a vapour control layer and ventilation above the insulation are required). Further information about loft insulation and details of local contractors can be obtained from the National Insulation Association (www.nationalinsulationassociation.org.uk).

Typical installation cost

Typical yearly saving

Potential rating after carrying out recommendation 1

Recommendation 2: Low energy lighting

Replacement of traditional light bulbs with energy saving recommended ones will reduce lighting costs over the lifetime of the bulb, and they last up to 12 times longer than ordinary light bulbs. Also consider selecting low energy light fittings when redecorating; contact the Lighting Association for your nearest stockist of Domestic Energy Efficient Lighting Scheme fittings.

Typical installation cost

Information unavailable

Typical yearly saving

Potential rating after carrying out recommendations 1 and 2

63 | C

£34

£11

63 I

Recommendation 3: Cylinder thermostat

A hot water cylinder thermostat enables the boiler to switch off when the water in the cylinder reaches the required temperature; this minimises the amount of energy that is used and lowers fuel bills. The thermostat is a temperature sensor that sends a signal to the boiler when the required temperature is reached. To be fully effective it needs to be sited in the correct position and hard wired in place, so it should be installed by a competent plumber or heating engineer.

Typical installation cost

Information unavailable

Typical yearly saving

£77

Potential rating after carrying out recommendations 1 to 3

Recommendation 4: Heating controls (thermostatic radiator valves)

Thermostatic radiator valves allow the temperature of each room to be controlled to suit individual needs, adding to comfort and reducing heating bills provided internal doors are kept closed. For example, they can be set to be warmer in the living room and bathroom than in the bedrooms. Ask a competent heating engineer to install thermostatic radiator valves. Thermostatic radiator valves should be fitted to every radiator except the radiator in the same room as the room thermostat. Remember the room thermostat is needed as well as the thermostatic radiator valves, to enable the boiler to switch off when no heat is required. It is best to obtain advice from a qualified heating engineer.

Typical installation cost

Information unavailable

Typical yearly saving

Potential rating after carrying out recommendations 1 to 4

£29

Recommendation 5: Band A condensing boiler

A condensing boiler is capable of much higher efficiencies than other types of boiler, meaning it will burn less fuel to heat this property. This improvement is most appropriate when the existing central heating boiler needs repair or replacement, but there may be exceptional circumstances making this impractical. Condensing boilers need a drain for the condensate which limits their location; remember this when considering remodelling the room containing the existing boiler even if the latter is to be retained for the time being (for example a kitchen makeover). It is best to obtain advice from a qualified heating engineer. Ask the engineer to explain the options.

Typical installation cost

Information unavailable

Potential rating after carrying out recommendations 1 to 5

Recommendation 6: Solar water heating

A solar water heating panel, usually fixed to the roof, uses the sun to pre-heat the hot water supply. This will significantly reduce the demand on the heating system to provide hot water and hence save fuel and money. The Solar Trade Association has up-to-date information on local installers and any grant that may be available or contact the Energy Saving Trust.

Typical installation cost

Information unavailable

Typical yearly saving

Potential rating after carrying out recommendations 1 to 6

£35

Recommendation 7: Solar photovoltaic (PV) panels

A solar PV system is one which converts light directly into electricity via panels placed on the roof with no waste and no emissions. This electricity is used throughout the home in the same way as the electricity purchased from an energy supplier. The British Photovoltaic Association has up-to-date information on local installers who are qualified electricians and any grant that may be available. It is best to obtain advice from a qualified electrician. Ask the electrician to explain the options.

Typical installation cost

Information unavailable

Typical yearly saving

£159

Potential rating after carrying out recommendations 1 to 7

Paying for energy improvements

Find energy grants and ways to save energy in your home. (https://www.gov.uk/improve-energy-efficiency)

Estimated energy use and potential savings

Estimated yearly energy cost for this property

Potential saving

£273

The estimated cost shows how much the average household would spend in this property for heating, lighting and hot water. It is not based on how energy is used by the people living at the property.

The estimated saving is based on making all of the recommendations in how to improve this property's energy performance.

Heating use in this property

Heating a property usually makes up the majority of energy costs.

Potential energy savings by installing insulation

The assessor did not find any opportunities to save energy by installing insulation in this property.

Contacting the assessor and accreditation scheme

This EPC was created by a qualified energy assessor.

If you are unhappy about your property's energy assessment or certificate, you can complain to the assessor directly.

If you are still unhappy after contacting the assessor, you should contact the assessor's accreditation scheme.

Accreditation schemes are appointed by the government to ensure that assessors are qualified to carry out EPC assessments.

Assessor contact details

Assessor's name

Brian Lavery

Telephone

08700 850490

Email

enquiries@elmhurstenergy.co.uk

Accreditation scheme contact details

Accreditation scheme Elmhurst Energy Systems Ltd

https://find-energy-certificate.service.gov.uk/energy-certificate/9105-4126-5620-5000-0513

Assessor ID EES/005025

Telephone

01455 883 250

Email

enquiries@elmhurstenergy.co.uk

Assessment details

Assessor's declaration

No assessor's declaration provided

Date of assessment

2 May 2009

Date of certificate

2 May 2009

Type of assessment

RdSAP

Other certificates for this property

If you are aware of previous certificates for this property and they are not listed here, please contact us at <u>mhclg.digital-services@communities.gov.uk</u> or call our helpdesk on 020 3829 0748.

There are no related certificates for this property.